General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DAM-24-0050
Direction
DAM
Thesis topic details
Category
Engineering science
Thesis topics
Modeling of radiation effects in GaN components
Contract
Thèse
Job description
Radiations from space or from environments related produce failures and accelerates the lifetime of electronic components. Ionization and charges produced during irradiations disrupt the operation of system electronics in a transient or cumulative way. This produces transients leading to drifts of the characteristics of the electronic components. It is essential to evaluate the densities of charge carriers generated by radiation in the sensitive parts of the components which transform the induced charges into a transient signal ('Single Event') and the insulators in which increasing quantities of charges can be trapped, which will lead to failures over time (cumulative dose). The accurate modeling of particle transport (electrons, protons and ions) in microelectronic materials is essential to better estimate the deposition in the sensitive volumes of elementary structures of electronics. In this context, the CEA in partnership with ONERA has developed, during several PhD, the MicroElec module implemented in the Geant4 framework (international collaboration see https://geant4.web.cern.ch/) dedicated to the transport of particles in matter. This module allows to estimate the spatial distribution of the charges induced by the particle range in the active material of microelectronic transistors. Currently, the MicroElec module deals with 11 materials suitable for modern Silicon microelectronics.
Over the past few years, R&D in GaN components has made significant progress in terms of performance, reliability and cost. GaN technology is now of industrial interest even for applications to be used with radiations and a high level of reliability. However, today, some materials used in GaN technology electronics are not taken into account in MicroElec. Thus, the PhD student will contribute to the extension of the list of MicroElec materials, which will be proposed to the scientific research community of the Geant4 international collaboration where the supervisors of this thesis participate. The models developed will be compared with the results of tests carried out in the laboratory, which the candidate may attend or participate in. The TCAD (Technology Computer-Aided Design) tools of the laboratory will be used to reproduce the electronic effects of the perturbations evaluated by MicroElec in the electronic components.
University / doctoral school
Génie Electrique - Electronique - Télécommunications (GEET)
Toulouse III
Thesis topic location
Site
DAM Île-de-France
Requester
Position start date
01/09/2024
Person to be contacted by the applicant
A914AF71643D4C6DBE7832434EE5458F@ts.com
Tutor / Responsible thesis director
D2655AD6AFF843A5A409F89FF171D186@ts.com
En savoir plus